AP Calculus Summer Homework Part 1

Sketch the graph and fill in the table of facts relating to each function (graph). You may use a calculator to refresh your memory. However, it is our long term goal to know these graphs from memory. We need to be able to draw them and to recognize drawings of them when they are presented.

These 27 graphs will be collected and graded. The assignment will be worth 25 points.

Part 2 of the Summer Homework assignment will not be collected. Instead, we will take a *test* over that assignment on the during the first week of the school year. To create the test, I will use a random number generator to select 25 of the questions from the assignment. The test will be worth 50 points. As it is a test and not a quiz, it cannot be dropped at the end of the semester.

www. Random.org

AP Calculus 27 Graphs

Name_____

Score _____

1. $f(x) = x$		
Domain		
Range		
Y-Intercept		
Root(s)		
Symmetry		
End Behavior Type		

2. $f(x) = c$		
Domain		
Range		
Y-Intercept		
Root(s)		
Symmetry		
End Behavior Type		

1

3. $f(x) = mx + b$		
Domain		
Range		
Y-Intercept		
Root(s)		
Symmetry		
End Behavior Type		

4	

4. $x = c$ Not A Function		
Domain		
Range		
Y-Intercept		
Root(s)		
Symmetry		

-	
L	

5. $f(x) = x $		
Domain		
Range		
Y-Intercept		
Root(s)		
Minimum		
Symmetry		
End Behavior Type		

-	

6. $f(x) = x^n$ <i>n</i> is even		
Domain		
Range		
Y-Intercept		
Root(s)		
Minimum		
Symmetry		
End Behavior Type		

_	
	 •

7. $f(x) = x^n$ <i>n</i> is odd	
Domain	
Range	
Y-Intercept	
Root(s)	
Symmetry	
End Behavior Type	

1	

8. $f(x) = \frac{1}{x^n}$ n is even		
Domain		
Range		
Y-Intercept		
Root(s)		
Symmetry		
End Behavior Type		
Horizontal		
Asymptote(s)		
Vertical		
Asymptote(s)		

•

9. $f(x) = \frac{1}{x^n}$ <i>n</i> is odd.		
Domain		
Range		
Y-Intercept		
Root(s)		
Symmetry		
End Behavior Type		
Horizontal		
Asymptote(s)		
Vertical		
Asymptote(s)		

10. $f(x) = \sqrt[n]{x}$ <i>n is even</i>		
Domain		
Range		
Y-Intercept		
Root(s)		
Symmetry		
End Behavior Type		

A
Т

11. $f(x) =$	$\sqrt[n]{x}$ <i>n is</i> odd
Domain	
Range	
Y-Intercept	
Root(s)	
Symmetry	
End Behavior Type	

12. $f(x) = a^x a > 1$	
Domain	
Range	
Y-Intercept	
Root(s)	
Symmetry	
End Behavior Type	
Horizontal Asymptote	
f(1) =	

13. $f(x) = a^x 0 < a < 1$	
Domain	
Range	
Y-Intercept	
Root(s)	
Symmetry	
End Behavior Type	
Horizontal Asymptote	
f(1) =	

	•	
	Т	
		•

14. $f(x) = e^x$	
Domain	
Range	
Y-Intercept	
Root(s)	
Symmetry	
End Behavior Type	
Horizontal Asymptote	
f(1) =	

	1	
		1
	1	
		1
	1	
		1
	1	
	1	
		1
	1	
,		1
	1	
		1
		1

15. $f(x) = \log_B(x) B > 1$		
Domain		
Range		
Y-Intercept		
Root(s)		
Symmetry		
End Behavior Type		
Vertical Asymptote(s)		
f(1) =		
$f(\mathbf{B}) =$		

16. $f(x) = \ln(x)$	
Domain	
Range	
Y-Intercept	
Root(s)	
Symmetry	
End Behavior Type	
Vertical Asymptote(s)	
f(1) =	
f(e) =	

-	

17. $(x-h)^2 + (x-h)^2 + $	$\left(y-k ight) ^{2}=r^{2}$ Not a Function
Domain	
Range	
Y-Intercept(s)	
Root(s)	
Symmetry	
Center	

-	

18. $f(x) = \sqrt{a^2 - x^2}$	
Domain	
Range	
Y-Intercept(s)	
Root(s)	
Symmetry	
$f(\mathbf{a}) =$	
f(-a) =	

$f(x) = \sin(x)$	
Domain	
Range	
Amplitude	
Period	
Vertical	
Asymptotes	
Symmetry	
Roots	

$f(x) = \csc(x)$	
Domain	
Range	
Amplitude	
Period	
Vertical	
Asymptotes	
Symmetry	
Roots	

$f(x) = \cot(x)$		
Domain		
Range		
Amplitude		
Period		
Vertical		
Asymptotes		
Symmetry		
Roots		

	•		

$f(x) = \cos(x)$	
Domain	
Range	
Amplitude	
Period	
Vertical	
Asymptotes	
Symmetry	
Roots	

$f(x) = \tan\left(x\right)$		
Domain		
Range		
Amplitude		
Period		
Vertical		
Asymptotes		
Symmetry		
Roots		

List the domain and range of each invers trigonometric function. Then list the three key points on each graph.

$f(x) = \sin^{-1}(x)$	
Domain	
Range	
Point 1	
Point 2	
Point 3	

f(x) =	$\cos^{-1}(x)$
Domain	
Range	
Point 1	
Point 2	
Point 3	

$f(x) = \tan^{-1}(x)$	
Domain	
Range	
Point 1	
Point 2	
Point 3	